Maternal hyperglycemia and its effects on placental vascular tone and endothelial nitric oxide activity

Nick Ieronimakis
Madigan Army Medical Center
JBLM, Tacoma WA
Placenta = Greek root; *plakuos*

Diogenes of Apollonia, 400BC
First to theorize that placentas nourish the developing baby… by direct suckling

Aristotle, 384BC
Recognized role of the umbilical cord in placenta nutrient flow

Gabriel Fallopius, 1523
Systematically characterized female reproduction… named the placenta!

Francois Mauriceau, 1637
Publications facilitated the science of obstetrics
Placentas role in fetal nutrition

• Interface for gas exchange and metabolites

• Source of maternal plasma cytokines and hormones $^{1-2}$

• Conducts lipid synthesis/catabolism 3

• Complications linked to placental metabolism
 • Preenclampsia
 • Gestational Diabetes Mellitus

Gestational Diabetes Mellitus

- Frequency 17.8% worldwide (HAPO study 2011)¹
 - Lowest frequency Israel, greatest U.S.
- Risk factors include: Obesity, age >30, family history, race²
 - >46% GDM associated with excessive BMI
- Associated with several pregnancy adverse outcomes¹
 - Pre-eclampsia
 - Postpartum hemorrhage
 - Stillbirth
 - Macrosomia
 - Fetal hypoglycemia
- Elevated risk for maternal and fetal type II diabetes and dyslipidemia³
- Characterized by hyperglycemia from insulin resistance⁴
 - Diagnosed 2nd or 3rd trimester
 - Typically clears following birth

Hyperglycemia and pregnancy

- Insulin sensitivity decreases with normal pregnancies
 - GDM significantly lower
 - Imbalance of maternal glucose uptake
- Associated with placental vascular dysfunction and altered vascular tone
- Vascular dysfunction central to adverse outcomes
 - Cause or consequence?
 - Well characterized for adult onset type II diabetes
 - For GDM/placenta experimental evidence limited

2. Leach L. J Anat. 2009. PMID 195635533
Ex Vivo Placenta Dual Perfusion Model

Dual Perfusion and Dual Cotyledon Model

Dr. Luckey Reed
Experimental Design

Hypothesis:

Hyperglycemia alters the placental vascular resistance by invoking molecular changes in tone signaling.
Normal Placental Response to hyperglycemia

- **Graph:**
 - X-axis: Time points (Baseline, Post treatment, THX, 1 min, 2 min, 3 min, 4 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min).
 - Y-axis: Pressure in mmHg.
 - Two lines: Control 100mg/dL and Hyperglycemic 300mg/dL.
 - Asterisks (*) indicate significance at p<0.05 by student's t-test.

- **Images:**
 - Pre-perfusion, Post-perfusion 100mg/dL, Post-perfusion 300mg/dL.
 - Labels: Endothelium and stroma, Smooth Muscle, Nuclei.
Molecular mechanism of altered tone

• Nitric oxide (NO) is a principle vasodilator
• Alterations in synthesis implicated in many vascular diseases
 - preeclampsia, HTN, atherosclerosis, Type II diabetes
• eNOS activity regulated by phosphorylation of serine 1177 residue
 - perturbed in Type II diabetes (PMID 23264539, 16731827)
Hyperglycemic influence on eNOS activity

Western blot quantification (phospho / total eNOS)

Pre-perfusion

Control

Hyperglycemia

P-eNOS (Ser1177)

Total eNOS

Sample number

P = 0.025

P = 0.029
Normal vs. GDM eNOS activity

Phospho-eNOS (Ser1177)
Total eNOS
Sample number

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bar graph showing the relative density of phospho-eNOS (Ser1177) in normal and GDM samples. The graph indicates a statistically non-significant difference (NS) between the two groups.

Legend:
- NS: Statistically non-significant
Conclusion

- Hyperglycemia alters the pressure response of normal placental arteries

- Results suggest an imbalance of constriction-dilation pathways

- Correlated with reduced activation of eNOS indicated by ser1177 phosphorylation
 - Hyperglycemia alone invokes perturbation
 - Similar baseline phosphorylation in managed GDM vs. normal placentas
 - Is eNOS activity perturbed due to uncoupling?

- Signaling cascade of hyperglycemia currently under investigation
 - How elevated glucose directly or indirectly invoke signaling
 - Akt and PKA-C perturbation
 - Osmotic effects of hyperglycemia
Acknowledgments

Mary Dehart, BS
Amber Lane, BS
MAJ Sarah Estrada, MD
MAJ Luckey Reed, MD
COL Peter Napolitano, MD
Questions?

Oh no!